

M62050P/FP

3 V Supply System Reset with Watchdog Timer

REJ03D0786-0200 Rev.2.00 Jun 15, 2007

Description

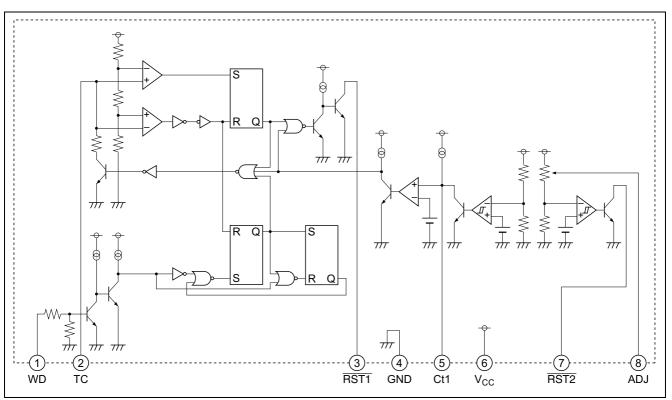
The M62050P/FP is a voltage threshold detector designed for detection of 3 V supply voltage and generation of a system reset pulse. It is suitable for microcontroller systems.

The IC, a supervisor of the MCU operations, dissipates low current of 0.6 mA (Typ) during normal operations of the MCU systems.

It has two selectable threshold voltages, which allows applying it to a high precision system design.

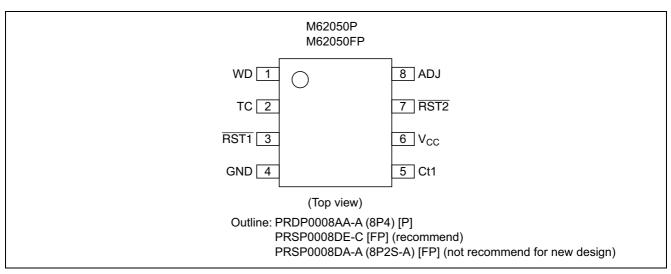
Features

- Watchdog timer (supervisor for two system voltages)
- Power-on reset timer
- Low current consumption: 0.6 mA (Typ, $V_{CC} = 3 \text{ V}$)
- Wide supply voltage range: $V_{CC(max)} = 7 V$


Application

• Supervisor for microcontroller systems

Recommended Operating Condition


• Recommended supply voltage: 3 V

Block Diagram

RENESAS

Pin Arrangement

Pin Description

Pin No.	Symbol	Functional Description			
1	WD	Input for watchdog timer			
2	TC	Time set for reset timer and watchdog timer			
3	RST1	Pin that outputs reset signal when abnormal signal is input to WD pin			
4	GND	GND			
5	Ct1	Capacitor installation pin for delay time setting			
6	V _{CC}	Power supply			
7	RST2	Pin that outputs reset signal when power supply voltage becomes abnormal			
8	ADJ	Selection between two detection voltages			

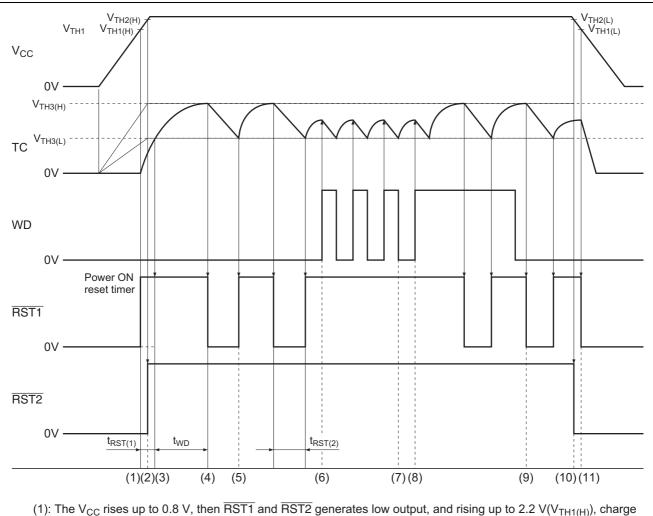
Absolute Maximum Ratings

			($Ta = 25^{\circ}C$, unles	ss otherwise noted)	
Item	Symbol	Rating	Unit	Co	Conditions	
Supply voltage	Vcc	7	V			
Input voltage	V _{IN}	–0.3 to +7	V			
Output voltage	Vout	15	V			
Output current	Ι _{Ουτ}	10	mA			
Power dissipation	Pd	625	mW	8-pin DIP		
		440		8-pin SOP	8-pin SOP	
Thermal derating	Κθ	6.25	mW/°C	Ta ≥ 25°C	8-pin DIP	
		4.4			8-pin SOP	
Operating temperature	Topr	-20 to +75	°C			
Storage temperature Tstg		-55 to +125	°C			

Electrical Characteristics

(Ta = -25° C, V_{CC} = 3 V, unless otherwise noted)

DC Characteristics

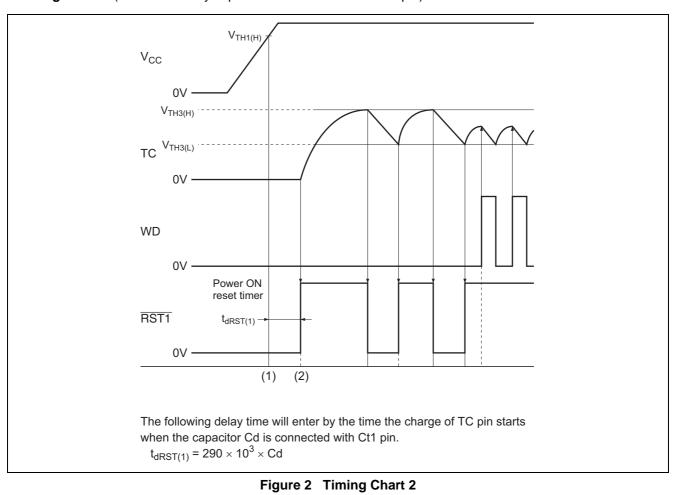

						Test Conditions	
Item	Symbol	Min	Тур	Max	Unit	Pin	
WD input current	I _{WD}	60	140	250	μA	WD	$V_{IN} = 3V$
WD input voltage	VIH	1.5	_	3.0	V	WD	
	VIL	-0.3	_	0.8			
TC output current	I _{OUT}	—	—	-1	μA	TC	$V_{IN} = 1.0V$
TC input current	l _{IN}	_	2.5	3.5	mA	TC	$V_{OUT} = 2.6V$
Watchdog timer	V _{TH3(H)}	_	2.4		V	TC	
threshold voltage	V _{TH3(L)}	_	1.2				
Output voltage	V _{OL}	_	0.2	0.5	V	RST1	I _{OUT} = 1mA
Output leakage current	lleak	—	—	5.0	μΑ	RST2	$V_{OUT} = 3V$
V _{CC} detection voltage (1)	V _{TH1(H)}	2.13	2.25	2.42	V	V _{CC(1)}	V _{CC} L→H
	V _{TH1(L)}	2.10	2.20	2.30			V _{CC} H→L
	ΔV_{TH1}	30	50	120	mV		$\Delta V_{TH1} = V_{TH1(H)} - V_{TH1(L)}$
V _{CC} detection voltage (2)	V _{TH2(H)}	2.43	2.55	2.72	V	V _{CC(2)}	V _{CC} L→H
	V _{TH2(L)}	2.40	2.50	2.60			V _{CC} H→L
	ΔV_{TH2}	30	50	120	mV		$\Delta V_{TH2} = V_{TH2(H)} - V_{TH2(L)}$
V _{CC} detection voltage (4)	V _{TH4(H)}	2.23	2.35	2.52	V	V _{CC(4)}	V _{CC} L→H
	V _{TH4(L)}	2.20	2.30	2.40			V _{CC} H→L
	ΔV_{TH4}	30	50	120	mV		$\Delta V_{TH4} = V_{TH4(H)} - V_{TH4(L)}$
RST1 ON voltage	RST1	_	—	0.5	V	RST1	V_{CC} = 1.2V, R_L = 4.7k Ω
RST2 ON voltage	RST2	_	—	0.5	V	RST2	V_{CC} = 1.2V, R_L = 4.7k Ω
Circuit current	Icc	_	600	950	μA	V _{CC}	

AC Characteristics

							Test Conditions
Item	Symbol	Min	Тур	Max	Unit	Pin	
Watchdog timer	t _{WD}	$C \times 1.1 \times R_1$		S	RST1		
		0.5	1.1	1.7	ms		$C = 0.1 \mu F, R_1 = 10 k \Omega$
Reset timer (1)	t _{RST(1)}	$C\times 0.5\times R_1$		S	RST1		
		0.2	0.5	1.1	ms		$C = 0.1 \mu F, R_1 = 10 k \Omega$
Reset timer (2)	t _{RST(2)}	830 × C		s	RST1		
		40	83	220	μS		$C = 0.1 \mu F, R_1 = 10 k \Omega$
Reset timer delay time	t _{dRST(1)}	$290 \times 10^3 \times Cd^*$		s	RST1		
		140	290	790	μS		$Cd = 0.001 \mu F$
Input pulse width	t _{WDIN}	3	_		μS	WD	
Propagation delay	t _{d1}	_	4	_	μS	RST1	
	t _{d2}	_	2	_		RST2	

Note: * Cd: Delay capacitor connected with Ct1 pin

Operating Description

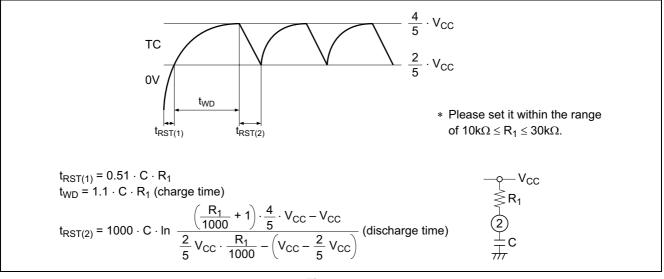

Timing Chart 1 (When the delay capacitor is not connected with Ct1 pin)

- (1): The V_{CC} rises up to 0.8 V, then RST1 and RST2 generates low output, and rising up to 2.2 V(V_{TH1(H)}), charge of C1 begins.
- (2): The V_{CC} rises up to 2.5 V(V_{TH2(H)}), then $\overline{\text{RST2}}$ generates high.
- (3), (4): The voltage at TC pin is 1.2 V($V_{TH3(L)}$ = 2/5 V_{CC}), then $\overline{RST2}$ generates high, when 2.4 V($V_{TH3(H)}$ = 4/5 V_{CC}), C1 is discharged and $\overline{RST1}$ generates low.
 - (5): The voltage at TC pin falls to 1.2 V, then RST1 generates high unless normal clock signal is entered to WD pin, RST1 repeats this operation.
- (6), (7): Before the voltage at TC pin reaches 4 V, if normal clock signal is entered to WD pin, low RST1 is canceled.
- (8), (9): In the case of entrance of abnormal signal input, as the waveform of TC pin repeats charge and discharge of RST1 alternatively, the RST1 repeats high and low output operation.
 - (10): The V_{CC} falls to 2.5 V(V_{TH2(L)}), then $\overline{\text{RST2}}$ generates low, this detective voltage has a 50 mV hysteresis.
 - (11): When V_{CC} goes down to 2.2 V(V_{TH1(L})), the status of TC pin is switched to discharge. When the potentional at TC pin is detected being V_{TH3(H}) or V_{TH3(L}), the status of RST1 becomes "low". (This detective voltage has a 50 mV hysteresis.)

Terminology

- $t_{RST(1)}$: Time required for TC pin potential to rise from 0 V $V_{TH3(L)}$ when V_{CC} is being applied.
- t_{WD} $\dot{}$: Time required for TC pin potential to rise from $V_{TH3(L)}$ to $V_{TH3(H)}$
- $t_{RST(2)}$: Time required for TC pin potential to go down from $V_{TH3(H)}$ to $V_{TH3(L)}$.
- t_{dRST(1)}: Time required for delay of charge with TC pin when V_{CC} is impressed by connecting capacitor with Ct1 pin between GND.

Figure 1 Timing Chart 1



Timing Chart 2 (When the delay capacitor is connected with Ct1 pin)

M62050P/FP

1. Pin(2) (TC pin) charge time and discharge time

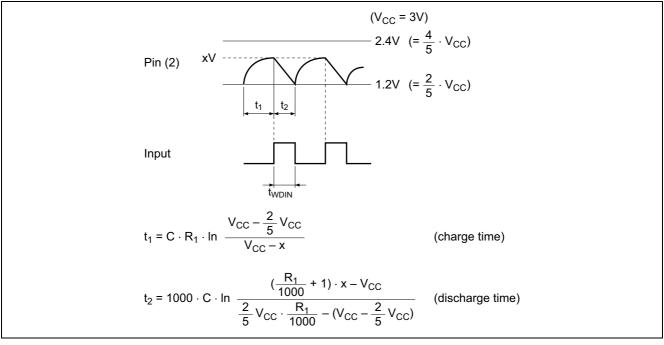
When input to WD pin is abnormal, TC pin output waveform is as shown below:

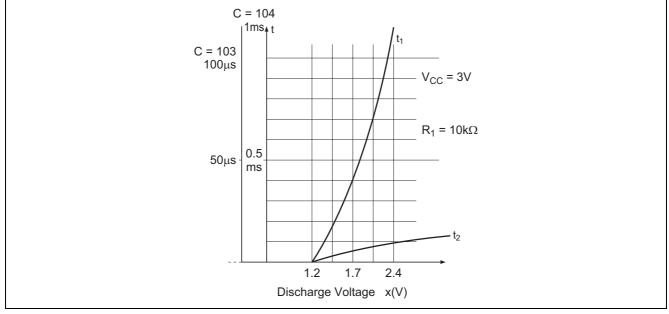
Figure 3

Please set the time of t_{WD} and $t_{RST(2)}$ within the following range. 110 $\mu s \leq t_{WD} \leq 1.1~s$

 $8.3~\mu\text{s} \leq t_{\text{RST}(2)} \leq 83~m\text{s}$

2. Pin (1) (WD pin) input frequency, input pulse width, charge time and discharge time When input to WD pin is normal, TC pin output waveform is as shown below:




Figure 4

• Pin (1) (WD pin) input requirements

(1) Input cycle: t_{WD} or less (discharge should start before voltage at WD pin reaches 2.4 V.)

$$\frac{1}{1.1 \cdot C \cdot R_1} < f$$

(2) Input pulse width t_{WDIN} : t_2 or less

3. V_{CC} detection voltage adjustment

The detection voltage 2 (V_{TH2}) can be set as shown in Table 1 by connecting ADJ pin with opening or V_{CC} .

Table 1 Detection Voltage 2 (ADJ pin)

Detection Voltage 2	at Opening (V)	at V _{cc} (V)
V _{TH2(H)}	2.55	2.35
V _{TH2(L)}	2.50	2.30

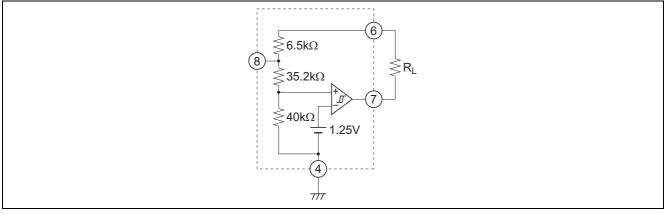
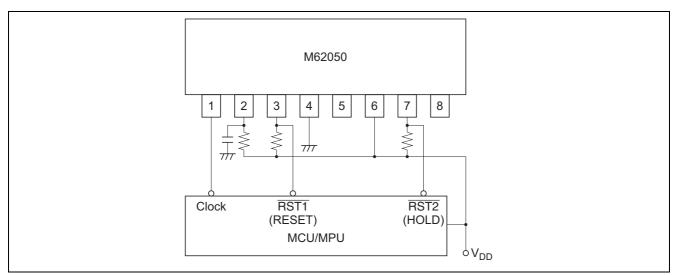
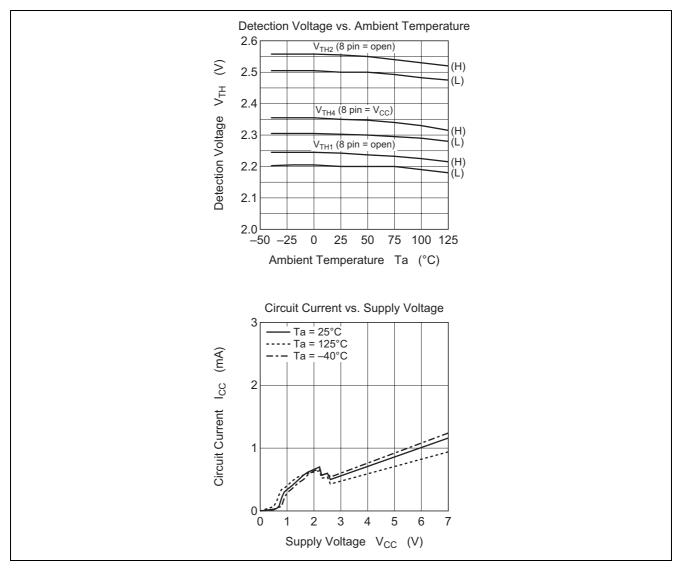
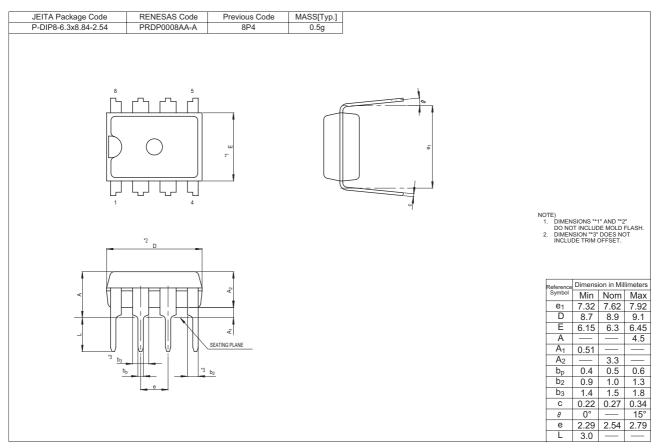
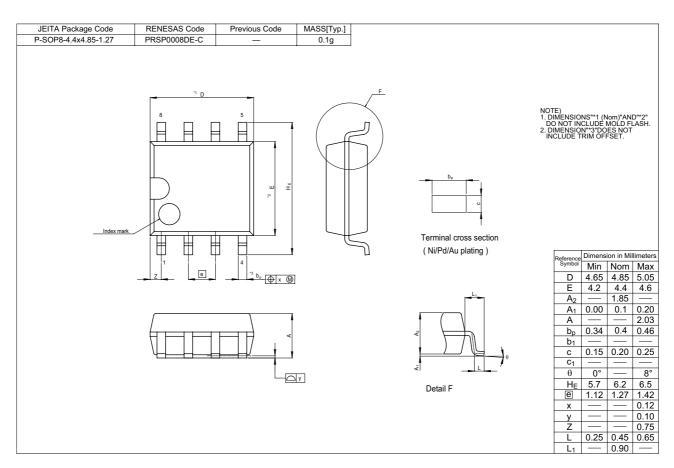


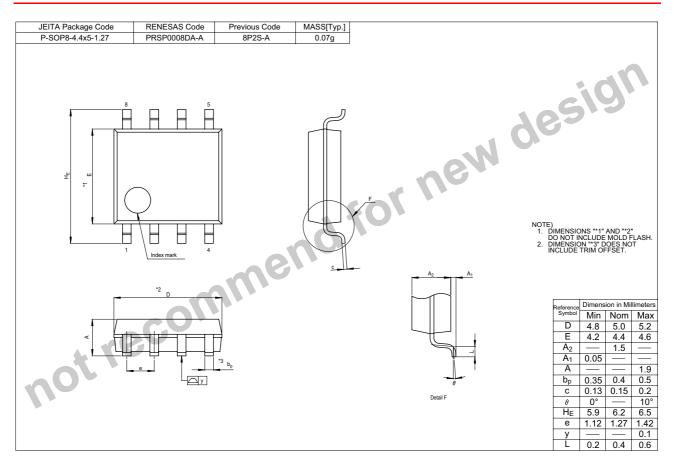
Figure 6

Application Example


Figure 7 Application Example

Typical Characteristics



Package Dimensions

RENESAS

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com